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In this paper we investigate magneto-oscillations in the specific heat and the magnetization of nonrelativistic
fermions coupled to a fluctuating U�1� gauge field. This model obtains as an effective model for the under-
doped cuprates realizing a so-called “algebraic charge liquid,” which is a true non-Fermi-liquid state. Our study
is driven by very recent observations of quantum oscillations in the underdoped cuprates. We calculate cor-
rections to the standard Lifshitz-Kosevich expression due to the internal gauge degree of freedom for the
oscillation amplitude. We perform this calculation in the dirty limit in a model with N species of fermions. The
N→� result corresponds to the well-known Fermi-liquid result reproducing the Lifshitz-Kosevich result. We
capture the effect of the gauge field on the oscillation amplitude to Gaussian accuracy controlled in the small
parameter 1 /N. Our main finding is the presence of qualitative and quantitative differences compared to
standard Fermi-liquid theory.
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I. INTRODUCTION

In this paper we investigate magneto-oscillations in ther-
modynamic quantities for systems, whose effective low-
energy description implies nonrelativistic fermions coupled
to an internal U�1� gauge field. The model of two-
dimensional nonrelativistic fermions coupled to an internal
gauge field has been the subject of intense studies over the
last 25 years in a variety of different contexts and systems. It
appears as an effective low-energy description of a number
of models falling into the class of strongly correlated elec-
tronic systems ranging from electrons in the fractional
quantum-Hall regime to theories of non-Fermi-liquid phases
for underdoped cuprates. Our subsequent studies are carried
out with an emphasis on the second scenario but should also
be of relevant for formally equivalent problems.

Experimentally, we are motivated by recent
observations1–6 of quantum oscillations in the underdoped
cuprate superconductors at high magnetic fields. One of the
most surprising features of these experiments was that cer-
tain aspects seem to be explainable only if one assumes the
presence of fermionic pockets.

So far, these experiments have been consistently inter-
preted using simple Fermi-liquid models of Fermi pockets.
The standard theory of quantum oscillations in Fermi
liquids7 yields oscillatory behavior of thermodynamic and
transport quantities as a function of 1 /B, where B is the
applied magnetic field, with an amplitude given by the
Lifshitz-Kosevich �LK� prefactor.8

However, as the precision and range of the observations
increase, it would be useful to have theoretical predictions
for other candidate metallic ground states of underdoped cu-
prates. To this end, we will examine the amplitude of quan-
tum oscillations in “algebraic charge liquids” �ACL�.9–11 The
charged excitations in these states are described by spinless

electrons coupled to an emergent U�1� gauge field. This sce-
nario is reviewed in some detail in Sec. V.

Our main finding is that these states also exhibit oscilla-
tions periodic in 1 /B, with a prefactor with small but detect-
able deviations from the LK theory, stemming from the pres-
ence of the internal gauge field. Recently, Ref. 12 has
addressed this problem in the clean limit at finite tempera-
tures. However, this approach does not include the oscilla-
tory terms in the gauge field propagator, which are respon-
sible for the main effects we describe below.

Our analysis consists of a computation of the free energy
of a system of N species of fermions coupled to a fluctuat-
ing, emergent U�1� gauge field. From the expression of the
free energy we obtain all thermodynamic quantities by
means of derivatives. Formally, one might think of N as
counting the flavors of electrons. The limit N→� allows an
exact mean-field description of the ACL which coincides
with a Fermi-liquid description. Fluctuations around this
state are controlled in powers of 1 /N. We compute the de
Haas–van Alphen oscillations in the presence of an applied
magnetic field in the dirty limit �specified below� to order
1 /N which implies we include the emerging gauge field to
Gaussian accuracy.

Our main results for the leading order and 1 /N correc-
tions for the specific heat are shown in Eqs. �27�, �35�, and
�43�. Most interestingly, we find a qualitative difference in
the behavior of the oscillations compared to Fermi-liquid
theory13–15 as a function of T /�c, i.e., temperature over the
cyclotron frequency. The comparison of Eqs. �27� and �43� is
explicitly shown in Figs. 1 and 2. Additionally, for the spe-
cific heat, cV, we find that the gauge field correction to the
oscillatory term has a temperature �T� dependence
�T ln�1 /T� which differs from the �T dependence in the
LK term and so may potentially be detectable in recent and
future experiments.16 We also calculate corrections to the
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magneto-oscillations in the magnetization with the main re-
sult given in Eq. �45�.

As mentioned before, it is also possible that our results
have implications for quantum-Hall systems, where similar
theories apply to compressible states at even denominator
fillings. However, we will not explore this connection further
here.

The organization of the paper is as follows. In Sec. II we
introduce the generic model for spinless fermionic degrees of
freedom subject to a perpendicular magnetic field in the pres-
ence of weak scalar disorder coupled to an internal gauge
degree of freedom. In Sec. II A we explicitly discuss the
Landau level structure and the role of disorder and explain a
consistent treatment on a phenomenological level. We con-
clude this section by deriving the effective theory for the
gauge field in the presence of disorder and Landau levels in
Sec. II B.

In Sec. III we present a formalism which allows to extract
the oscillatory part of the gauge field contribution to order
1 /N. To this end we have to calculate oscillatory thermody-
namic and transport quantities, which are shown in some
detail in Appendix A. In Sec. IV we present a calculation of
the specific heat of the system to order 1 /N. In Sec. IV A we
review the derivation of the specific heat and the associated
de Haas–van Alphen oscillations of a disordered gas of elec-
trons subject to an external magnetic field. In Sec. IV B we
calculate the specific heat of the gauge field. In a first step
�Sec. IV B 1� we derive the specific heat of the nonoscilla-
tory part whereas in Sec IV B 2 we calculate the oscillatory
correction. Furthermore we calculate the oscillatory contri-
bution of the gauge field to the magnetization. In Sec. V we
explain the meaning of our results in the context of a very
recent ACL scenario description of the cuprates. Finally, we
summarize in Sec. VI.

II. MODEL

We consider a Fermi gas of spinless fermions with qua-
dratic dispersion minimally coupled to an internal U�1�
gauge field. The generic Lagrangian for such a system reads

L f = f̄��� − iA� −
��− iA�2

2m
− �� f , �1�

where A denotes the internal U�1� gauge field and f is the
spinless electronic degree of freedom. As already mentioned
in the introduction such an effective description occurs in a
variety of mean-field descriptions of strongly correlated elec-
tronic systems. In Sec.V we will discuss the physical origin
of the gauge field in the context of the ACL.

A. Disorder broadened Landau levels in the dirty limit

In the problem at hand we consider the above Lagrangian
in the presence of an additional external magnetic field, B
=��a, perpendicular to the plane, which implies the fermi-
ons live in Landau levels. In the absence of the internal U�1�
gauge field A we can diagonalize the electronic part and cast
it as

L f = f̄��� − �c�n +
1

2
�� f , �2�

where �c= eB
m is the cyclotron frequency, n the Landau level

index. The degeneracy of the Landau levels is given by

1

2�lB
2 =

m

2�
�c = �0�c, �3�

where �0= m
2� is the density of states of the two-dimensional

electrons without magnetic field at the Fermi level, m the
band mass, and lB is the so-called magnetic length.

Additionally, we want to consider the effect of dilute dis-
order which couples to the electromagnetic charge. In the
context of the two-dimensional disordered electron gas in a
perpendicular magnetic field this was first considered by
Ando17 in the framework of the self-consistent Born approxi-
mation. It was realized, that on a phenomenological level in
the oscillatory regime it is sufficient to introduce a finite
lifetime for the electronic degrees of freedom. The phenom-
enological one particle retarded Green’s function reads

Gf��,n� =
1

� − �c�n + 1/2� + i/2�
. �4�

The major effect of dilute disorder is thus to broaden the
Landau levels. The regime of magneto-oscillations we are
interested in, the so-called dirty limit, is characterized by
�c��1. In this regime the density of states has a constant
part �just like in a Fermi liquid without magnetic field� with
a smooth oscillatory part on top of it, see Eq. �15�. In order
to derive the effective action for the gauge field we addition-
ally need to deal with disordered two-particle functions,
which is the subject of the next section.

B. Effective action for the gauge field in the diffusive limit

To order 1 /N we need to derive the photon propagator of
the internal U�1� gauge field in the presence of disorder and
Landau levels for the thermodynamic potential. Schemati-
cally, our derivation goes along the following line: the fer-
mionic action reads

S = �
0

	

d�d2xf̄	i�� + � − 
�− i � − ea − A� + ia�
f . �5�

In the absence of the magnetic field we assume a parabolic
dispersion, i.e., 
�k�= k2

2m . Consequently, we integrate out the
fermions leading to

Seff = − tr ln	i�� + � − 
�− i � − ea − A� + ia�
 . �6�

In the above expression the Gaussian integration over the
electrons has schematically been performed. Expanding the
above expression to second order in A using the canonical
momentum −i�−ea=� we obtain the effective Gaussian
gauge field propagator whose Kernel is just the polarization
operator. In principle, one could derive the effective polar-
ization operator in the basis of the Landau levels.18 In the
presence of disorder this is a tedious calculation since also
vertex corrections have to be taken into account eventually
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requiring a numerical solution of the problem.
However, here we choose a different route using the

highly constrained form of density-density-type correlators,
which allows us to obtain analytical expressions for the
magneto-oscillations of the gauge field. In general, the polar-
ization operator is obtained by expanding to second order in
the internal gauge field and performing the functional deriva-
tive according to

�2Seff

�Ai�q,i���A j�− q,− i��
= �̂ij�q,i�n� , �7�

which implies it is just the Kernel of the internal gauge field
propagator. Following Halperin et al.19 we keep the follow-
ing two-component form of the photon propagator

D̂−1�q,�� = �̂�q,�� =� �̂00
q

�
�̂xy

−
q

�
�̂xy

�̂yy � . �8�

For thermodynamic quantities it suffices to concentrate on
the low-energy form of the photon propagator. The overall
form of the photon propagator is highly constrained by con-
servation laws and the respective matrix elements read

�̂00 = �
Dq2

Dq2 − i�
,

�̂yy = i�yy + q2� ,

�̂xy = i�xy �9�

with � being the density of states �DOS� at the Fermi level,
yy and xy being the longitudinal and Hall conductivity,
respectively, and � being the diamagnetic susceptibility. The
diffusive limit of the system is accounted for by replacing the
low-energy form of the density-density correlator �00=� by
its diffusive counterpart �00=�

Dq2

Dq2−i�
. This, on a formal

level, is achieved by including impurity ladders into the ver-
tex function. The dependence upon the magnetic field enters
through the field-dependent quantities xx, xy, �, and �. Fur-
thermore, D denotes the diffusion constant and is given by

D=
vF

2

d �, where d is the dimensionality, thus d=2 for our pur-
poses. The free energy due to the gauge field is readily cal-
culated using �see Halperin et al.19�

FA = �� d2q

�2��2� d�

2�
nb���arctan

Im det D̂−1�q,��

Re det D̂−1�q,��
. �10�

The upper cutoff � is set by roughly twice the Fermi mo-
mentum, i.e., �2kF. This is the upper bound on momen-
tum transfer for the existence of low-energy excitations.
Equation �10� is the central expression of this section which
will allow to calculate thermodynamic quantities with and
without applied magnetic field.

III. OSCILLATORY PART OF THE SPECIFIC HEAT
OF THE GAUGE FIELD

In this section we introduce a framework which allows to
deduce oscillatory and nonoscillatory contributions of the
gauge field to thermodynamic quantities. We decompose the
inverse photon propagator 	Eq. �8�
 into two parts, one con-

taining the nonoscillatory contributions, called D̂0 and an-
other part containing the oscillatory contributions, called

D̂osc. The quantities xx, xy, �, D, and � naturally decom-
pose into a nonoscillatory part and an oscillatory part

� = �0 + �osc,

xx = xx
0 + xx

osc,

xy = − �c��xx
0 + xx

osc� ,

� = �0 + �osc, �11�

where all oscillatory contributions are expressed as a power
series in exp�− �

�c�
�. This, on a formal level, is facilitated by a

Poisson summation duality. As long as �c��1 it suffices to
retain the first moment in this power series to isolate the
leading oscillatory contribution. The results for the oscilla-
tory quantities of two-dimensional fermions subject to a
magnetic field are given in the subsequent subsection.

Using an expansion controlled in the oscillatory part
being small

det D̂−1 = det D̂0
−1 det�1 + D̂0 · D̂osc

−1 �

 det D̂0
−1�1 + tr D̂0 · D̂osc

−1 � �12�

we can formulate the contribution of the gauge field to the
free energy as

FA = �� d2q

�2��2� d�

2�
nb���arctan

Im det D̂−1�q,��

Re det D̂−1�q,��

 �� d2q

�2��2� d�

2�
nb���arctan

Im det D̂0
−1�q,��

Re det D̂0
−1�q,��

+ �� d2q

�2��2� d�

2�
nb���Im tr D̂0 · D̂osc

−1 + O�e−2�/�c�� .

�13�

It is important to note that the second term is now propor-
tional to exp�− �

�c�
� and thus small compared to the first term.

The first term in the above expression has been analyzed by
Halperin et al.,19 and is known to yield a temperature-
dependent contribution to the free energy of the type T ln T,
which is reviewed later. The additional factor of ln�1 /T�
compared to a Fermi liquid is the manifestation of the well-
known Altshuler-Aronov20 correction. Equation �13� consti-
tutes the starting point for all subsequent manipulations.

Oscillatory thermodynamic and transport quantities

We saw in the preceding sections that we can relate the
entries of the polarization operator matrix to fundamental
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thermodynamic and transport properties of the disordered
Fermi liquid. In the following calculations we retain the
leading order temperature dependence of the density-density
and current-current response in � /T, however we will allow
for arbitrary T /�c.

The DOS can be calculated in a way analogous to the
grand potential �see Appendix A for a detailed presentation�.
In the regime ���1, the expression for the DOS at the
Fermi level reads

���� = �0�1 + 2�
l=1

�

�− 1�lcos
2�l�

�c
e−�l/�c�� , �14�

whose leading oscillatory behavior is given by

����  �0�1 − 2 cos
2��

�c
e−�/�c�� . �15�

We can calculate the longitudinal conductivity at finite T /�c
accordingly,17 yielding

yy = 0
1

1 + ��c��2�1 + 2�
l=1

�

�− 1�lcos
2�l�

�c

e−�l/�c��l

sinh �l
�

 0
1

1 + ��c��2�1 − 2 cos
2��

�c
e−�/�c� �1

sinh �1
� �16�

with 0= ne2�
m and �l=

2�2Tl
�c

.
Using the well-known Einstein relation for diffusive sys-

tems

 = �D �17�

we can determine the oscillatory part of the diffusion con-
stant D. It turns out that to leading order we have

D = D0�1 + 2 cos
2��

�c
e−�/�c�	1 − ��T,�c�
� , �18�

where we introduced the function

��T,�c� =
2�2T/�c

sinh 2�2T/�c
�19�

for notational convenience. We observe that for T��c D
=D0 to all orders in exp�− �

�c�
�. Furthermore, it is straightfor-

ward to show that

xy = − �c�xx �20�

to all orders in exp�− �
�c�

�.
The diamagnetic susceptibility can be obtained from the

grand potential 	Eq. �A14�
 by

� = −
�2�

�B2 . �21�

Using Eq. �A14� in the limit �c��1,
�c

� �1, and ���1 we
obtain

�  −
1

24�m
�1 + 24

�2

�c
2cos

2��

�c
e−�/�c���T,�c��

= �0�1 + 24
�2

�c
2cos

2��

�c
e−�/�c���T,�c�� . �22�

In principle, there are further corrections stemming from the
oscillations in the chemical potential. These fluctuations are
also small in e−�/�c�. Consequently, they lead to higher order
corrections which justifies neglecting them.

IV. FREE ENERGY, SPECIFIC HEAT, AND
MAGNETIZATION

In the spirit of the large-N treatment we can expand the
free energy F to order 1 /N, which yields the following re-
sult:

F = NF0f + FA, �23�

where F0f is the free energy of the noninteracting fermionic
system and FA denotes the free energy associated with fluc-
tuations of the emergent gauge field.

The specific heat can be obtained by differentiation, i.e.,
cV=−T �2F

�T2 . This implies that the specific heat decomposes
into two parts

cV = NcV
f + cV

A, �24�

which are analyzed independently in Secs. IV A and IV B.
The same kind of relation holds for the magnetization, which
is calculated in Sec. IV C.

A. Specific heat of the electrons

The free energy is related to the grand potential via Leg-
endre transform

F0f = �N + � . �25�

The dependence of the chemical potential upon the magnetic
field is subdominant, thus

cV = − T
�2F0f

�T2  − T
�2�

�T2 �26�

with the oscillatory contribution obtained from Eq. �A14�

cV
osc = ��T�

�0

2�2T cos
2��

�c
e−�/�c� = ��T�

mT

4�3cos
2��

�c
e−�/�c�,

�27�

where
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��T� = �c
2 �2

�T2��T,�c�

=
4�6T

�c sinh3�2�2T

�c
��3 + cosh�4�2T

�c
��

−

4�4 sinh�4�2T

�c
�

sinh3�2�2T

�c
� . �28�

We compare this function to the oscillatory contribution from
the gauge field in Sec. IV B 2.

In the limit T
�c

�1 this reduces to the well-known expres-
sion

cV =
�2�0

3
T�1 − 2 cos

2��

�c
e−�/�c�� �29�

per species.

B. Specific heat of the gauge field

We proceed to calculate the nonoscillatory and oscillatory
contributions of the gauge field to the specific heat, sepa-
rately.

1. Nonoscillatory contribution

We start with a calculation of the nonoscillatory part of
the specific heat of the gauge field. In order to do so we
analyze

�� d2q

�2��2� d�

2�
nb���arctan

Im det D̂0
−1�q,��

Re det D̂0
−1�q,��

. �30�

We can rewrite the contribution to the specific heat as

cV
A =

T

16�2�
0

�/�T

dk�
−�

�

dx

�

k�2x − x2 coth� x

2
��

sinh�x/2�2 arctan
cxk2

ak4 + bx2 �31�

with

a = D�0	1 + 48�2��c��2�yy
0 �2
 ,

b = − yy
0 �1 + �c

2�2� ,

c = Dyy
0 + �0  Dyy

0 �32�

for ���1. In order to analyze the asymptotic behavior of the
above x integral, we start noting that the x integration is
cutoff by the factor 1

sinh2 x
2

on the order of x=10. If we con-

sider the factor 1
ak4+bx2 , we know that for k��10� b

a �1/4 it

becomes 1
ak4 whereas for k�4 it becomes 1

x2 . Only in the
former case will the integral contribute a logarithmic depen-
dence upon temperature hence

cV
A  −

cT

6a
�

�10� b

a
�1/4

�/�T dk

k
= −

cT

12a
ln

�2a1/2

10b1/2T
. �33�

We furthermore introduce the short form

� = 1 + 48����2��c��2, �34�

which is a number of order 1. This leaves us with

cV
A = 8

��m

�
T ln�8�

5T
��

3
� �35�

as the nonoscillatory contribution.

2. Oscillatory contribution of the gauge field

In this section we analyze the oscillatory contribution of
the gauge field. Following the prescription given in Eq. �12�
we decompose the gauge-field propagator according to

D̂−1 = ��
Dq2

Dq2 − i�
iqxy

− iqxy i�yy + �q2�
= ��0

D0q2

D0q2 − i�
iqxy

0

− iqxy
0 i�yy

0 + �0q2�
+ ���

Dq2

Dq2 − i�
�

osc
iqxy

osc

− iqxy
osc i�yy

osc + �oscq2 �
= D̂0

−1 + D̂osc
−1 . �36�

Using the oscillatory expressions derived in Sec. III we iden-
tify
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D̂osc
−1  − 2 cos

2��

�c
e−�/�c�D̂0

−1 + cos
2��

�c
e−�/�c� � �− 2

�0D0
2q4

�D0q2 − i��2 	1 − ��T,�c�
 0

0 24
�2

�c
2�0q2��T,�c� � , �37�

where
�c

� �1 was used. Calculating Im tr D̂0 · D̂osc
−1 we realize

that the first term on the right-hand side of Eq. �37� does not
contribute an imaginary part, thus

Im tr D̂0 · D̂osc
−1 = − 24

�2

�c
2cos

2��

�c
e−�/�c�

� ���T,�c�
Cq2�

Aq4 + B�2 +
�c

2

12�2

�	��T,�c� − 1

C̃q2�

Aq4 + B�2

ãq4 + b̃�2

D2q4 + �2� .

�38�

Looking at Eq. �38� it is interesting to note that there are two
contributions. The first contribution survives in the limit
T /�c→0, whereas the second part goes to zero. Addition-

ally, the second term is down by a factor
�c

2

�2 and is thus
parametrically small compared to the first term. Conse-
quently, we will discard the second contribution for our
analysis. The remaining constants read

A = D0	�xy
0 �2 − �0�0
2,

B = 	�xy
0 �2 + �yy

0 �2
2,

C = D0�0�0	�xy
0 �2 + �yy

0 �2
 . �39�

The constants of the disordered electronic system involved in
the above expression assume the well-known values

yy
0 =

1

1 + ��c��20,

xy
0 = −

�c�

1 + ��c��20,

�0 =
m

2�
, �0 = −

1

24�m
,

�2

�c
2 = � 2�

�c�
�2

0
2, D0 =

2�0

m
. �40�

We proceed to calculate the temperature dependent part of
the free energy �see Appendix B�. This part reads

Fosc
A = −

�2

�c
2

C

A
cos

2��

�c
e−�/�c���T,�c�T2 ln��A

B

�2

T
�

− �
�2

�c
2

C

A
cos

2��

�c
e−�/�c���T,�c�T2 �41�

with �0.352822 and constitutes the main result since it
allows to obtain all oscillatory contributions due to the gauge
field via differentiation. Consequently, thermodynamic quan-
tities obtained via differentiation of Eq. �41� will carry the
labels A and osc. We introduce the dimensionless functions

	�T� = −
�2

�T2T2��T,�c� ,

��T� = − ��T,�c� +
1

T

�

�T
T2��T,�c� + �	�T� , �42�

which allow to express the specific heat as

0.1 0.2 0.3 0.4 0.5 0.6

T

Ωc

�150

�100

�50

50

FIG. 1. �Color online� Function ��T� �yellow/solid�, 5��T�
�blue/dashed�, and 5	�T�ln�100 /T� �red/dotted� where T is mea-
sured in units of �c and 4�

3� =100 in units of �c.

0.1 0.2 0.3 0.4 0.5 0.6

T

Ωc

�150

�100

�50

50

FIG. 2. �Color online� ACL result for the oscillation amplitude
5��T�+��T� �blue/dashed� compared to the Fermi-liquid result ��T�
�red/thick� where T is measured in units of �c and 4�

3� =100 in units
of �c.
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cV
Aosc = cos

2��

�c
e−�/�c� 24����3

��c��2�2mT ln��A

B

�2

T
�	�T�

+ cos
2��

�c
e−�/�c� 24����3

��c��2�2mT��T� �43�

with � as defined in Eq. �34�. It is important to note here that
for T��c both 	�T� and ��T� approach constant values.
Thus, at low temperatures the first term with the logarithmic
temperature dependence will dominate the second term. If
we compare standard Fermi-liquid oscillations 	Eq. �27�

with the 1 /N corrections we realize that their ratio behaves
as

NcV
Aosc�T�
cV

osc�T�
=

96�3����3

��c��2�2

	�T�ln��A

B

�2

T
� + ��T�

��T�

=
96�3����3

��c��2�2

��T�
��T�

. �44�

In order to get a meaningful comparison at different tempera-
tures we plot the dimensionless quantities ��T�,
	�T�ln�100 /T�, and ��T� in Fig. 1, where ��T� denotes the
oscillation amplitude of the oscillations associated with the
gauge field, and ��T� is the standard Fermi liquid result. We
refrain from plotting ��T�, since it is, as mentioned before,
subdominant with respect to the logarithmic part. For a rea-
sonable qualitative comparison of the functional forms of the
two contributions we take the dimensionless oscillation am-
plitude prefactor in Eq. �44� to be on the order of 5.

It is also useful to compare the sum of the oscillatory
contribution in the ACL to standard Fermi-liquid behavior.
This plot is shown in Fig. 2 where the same numerical values
as for Fig. 1 were used. From the figures we see that in an
experiment the most clear indications for an ACL ground
state would be a lot more structure on the curve compared to
the Fermi liquid as well as a logarithmically diverging am-
plitude as function of temperature T once the linear in T
behavior is divided out.

C. Oscillatory magnetization

A quantity which is also often measured in magneto-
oscillations measurements is the magnetization. For this rea-
son we also make predictions for experimental signatures of
the ACL ground state. Again, we calculate the oscillatory
contribution due to the gauge field from Eq. �41�. From el-
ementary thermodynamic relations we obtain

Mosc
A = −

�Fosc
A

�B

=
C

A�0
�

����2

��c��2��T,�c�sin�2��

�c
�

�
T2

�c
2�ln��A

B

�2

T
� + ��e−�/�c�. �45�

The temperature behavior of this result constitutes a stark

deviation from the standard result in a Fermi liquid due to
Champel et al.21 reading

M =
2�0�c�

�B
��T,�c�sin�2��

�c
�e−�/�c�. �46�

Again, as in the case of the specific heat, the oscillation
period is unaffected, but the amplitude is modified and
strongly temperature dependent �note the T2 ln 1 /T�. Again,
such a deviation from Fermi-liquid predictions could be ex-
pected to show if the underlying ground state is of the ACL
type.

V. APPLICATION TO THE UNDERDOPED CUPRATE
SUPERCONDUCTORS

Recent experiments performed in the underdoped regime
of the cuprate superconductors show great promise to shed
light onto some aspects of these still mysterious materials. In
our discussion we focus on quantum oscillation measure-
ments in the underdoped region of YBa2Cu3O7−�.1–6 In this
context, LeBoeuf et al.6 observed signatures indicating the
presence of pockets of carriers of charge −e �in contrast to
holelike charge carriers�.

Here, we will discuss these experiments using a specific
theoretical model9–11,22,23 for the interplay between spin-
density wave �SDW� and superconductivity in the under-
doped regime. We investigate the magneto-oscillations for
magnetic fields greater than Hc2, i.e., in the absence of su-
perconductivity. In contrast to earlier works10 which investi-
gated Shubnikov-de Haas oscillations, we emphasis the role
of de Haas–van Alphen oscillations, i.e., oscillation in ther-
modynamic quantities.

The theory has two nonsuperconducting metallic phases.
One has long-range SDW order and so is a conventional
Fermi liquid at low-enough temperatures: here the magneto-
oscillations will be given by the LK theory. The other metal-
lic phase has no SDW order but retains aspects of the Fermi
pocket structure of the SDW-ordered phase: this is the alge-
braic charge liquid. The ACL has an emergent gapless U�1�
photon which will lead to corrections to the LK theory, as we
have discussed above. The photon acquires a Higgs mass,
�AF, across the transition from the ACL to the SDW phase
and so its effects are quenched in the SDW phase. We want
to stress here that the gauge field is an important component
in the description of states with the mentioned electron/hole
pocket structure. Ad hoc models usually violate the Luttinger
Fermi area law. However, it was argued that metallic states
with non-Luttinger-Fermi surfaces must have topological or-
der, which means there is an additional collective excitation
which is faithfully described by the emergent gauge field.24,25

The above described scenario is explained in great detail in
Refs. 10 and 22.

The specific model has the Lagrangian

L = Lz + Lg + L f �47�

with the respective constituents explained below.
The first term describes the magnetic degrees of freedom.

Conventionally, the slow magnetic degrees of freedom are
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expressed in the framework of O�3� nonlinear sigma model.
Here, however, we map the SDW order parameter �� to
bosonic degrees of freedom z, which carry spin S= 1

2 , via

�� = �
�,	

z�
�� �	z	 �48�

and the effective Lagrangian assumes the form of the so-
called CP1 model

Lz =
1

t ��
�=1

N

����� − iA��z��2 + v2���− iA�z��2�

+ i��
�=1

N

��z��2 − N�� , �49�

where A� and A denote an internal U�1� gauge field emerg-
ing from the redundant parametrization of the SDW order
parameter shown in Eq. �48�. Furthermore, t denotes the
stiffness, v the spin-wave velocity and � serves as Lagrang-
ian multiplier. Interestingly, the bosonic spinons z locally
determine the spin axis of the physical electrons, which leads
to fractionalization of the spin and the charge degrees of
freedom. Consequently, the effective charge carriers also
couple to the internal gauge field. It was known for a long
time that the existence of spin-density-wave order, i.e., �z�
�0, is responsible for a Fermi surface reconstruction.26,27 In
a very simple approximation we can take this fact into ac-
count by introducing operators g+ and g− for the electronic
pockets sitting at the antinodal points �� ,0� and f+1, f+2, f−1,
and f−2 for the hole degrees of freedom sitting at the nodal
points �� /2,� /2�

Lg = ḡ+��� − iA� −
��− iA�2

2m1
− ��g+

+ ḡ−��� + iA� −
��+ iA�2

2m1
− ��g− �50�

and

L f = �
q,a

f̄qa��� − iqA� −
��− iqA�2

2m2
− �� fqa, �51�

where q=� and a=1,2. As explained before, all the fermi-
onic degrees are coupled to the internal U�1� gauge field but
carry different charges under the transformation.

We concentrate on the metallic SDW and ACL states with
small Fermi pockets, i.e., for magnetic fields H bigger than
the critical field strength Hc2 above which superconductivity
is destroyed. In the above model we again introduce disorder
and the magnetic field on the level of the single-particle
propagator with two scattering times �g and � f for electron
and hole pockets, respectively. We realize that there are two
cyclotron frequencies �cg and �cf. Additionally, there are
two scattering times. The following discussion is again valid
in the limit �cg�g ,�cf� f �1. The specific heat of the system
is composed of four different contributions

cV = NzcV
z + NcV

g + NcV
f + cV

A. �52�

The first term is due to the bosonic spinons and was calcu-
lated in Ref. 28. The two following terms were calculated
together with the magneto-oscillations in Eq. �29�. Turning
to the gauge field propagator we realize that the gauge field
propagator is still given by Eq. �8�, however Eq. �9� modifies
to

�̂00 = �g
Dgq2

Dgq2 − i�
+ � f

Dfq
2

Dfq
2 − i�

,

�̂yy = i�yy
g + q2�g + i�yy

f + q2� f ,

�̂xy = i�xy
g + i�xy

f , �53�

which implies we can write

D̂−1 = D̂g
−1 + D̂f

−1. �54�

A further modification comes into the picture due to the pres-
ence of the bosonic spinons. In the SDW state they condense,
i.e., �z�2��AF, implying that the Higgs effect contributes a

mass term leading to �̂yy = i�yy
g +q2�g+ i�yy

f +q2� f +�AF.
For the moment we will neglect this term and defer the

discussion of the SDW state to the end of the section. As we
discussed earlier, the oscillatory contributions to the thermo-
dynamic and transport quantities entering Eq. �53� are of the
form e−�/�cg�g and e−�/�cf�f. In the following we will consider
e−�/�cf�f �e−�/�cg�g. With this we can express the oscillating
term to leading order in �

�c
according to

D̂osc
−1 = − 2 cos

2��

�cg
e−�/�cg�gD̂0

−1

+ 24
�2

�cg
2 cos

2��

�cg
e−�/�cg�g��T,�cg��0 0

0 �g0q2 �
+ O�e−2�/�cg�g,e−�/�cf�f,� �

�c
�0� . �55�

As in our preceding discussion in Sec. IV B 2, the first term
drops out and eventually we can write the whole expression
as

Im tr D̂0 · D̂osc
−1 = − 24

Cq6� + C̃q2�3

Aq8 + Ãq4�2 + B�4

�2

�cg
2

�cos
2��

�cg
e−�/�cg�g. �56�

Again, we are only interested in isolating the logarithmic
behavior, for which we only need to know the constants A,
B, and C. We find, following the earlier calculation, that the
logarithmic part of the specific heat is given by
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cV
Aosc = −

C

A

�2

�cg
2 cos

2��

�cg
e−�/�cg�g

� ln��A

B

�2

T
�T

�2

�T2T2��T,�cg� �57�

with

A = Dg0
2 Df0

2 	�xy
0 �2 − �0�0
2,

B = �yy
0 �4,

C = Dg0
2 Df0

2 �0
2yy

0 �g0, �58�

where

xy
0 = xy

g0 + xy
f0,

yy
0 = yy

g0 + yy
f0 ,

�0 = �g0 + � f0,

�0 = �g0 + � f0. �59�

In the SDW phase, the presence of a finite Higgs term �AF
�0 in the gauge field propagator introduces a new energy
scale into the problem and the magneto-oscillations will es-
sentially be given by LK theory. Without going into the de-
tails we can show this along the lines of the derivation of Eq.
�57�. The logarithmically in temperature diverging prefactor
is now cutoff by the Higgs mass �AF. A compact formulation
of Eq. �57� treating both regimes is given by

cV
Aosc = −

C

A

�2

�cg
2 cos

2��

�cg
e−�/�cg�g

� ln��A

B

�2

max��AF

�
,T��T

�2

�T2T2��T,�cg� ,

�60�

which in the SDW phase at very low temperatures �T
�

�AF

� � corresponds to a simple renormalization of Fermi-
liquid theory.

VI. SUMMARY AND DISCUSSION

In this paper we analyzed magneto-oscillations in the spe-
cific heat and the magnetization of two-dimensional nonrel-
ativistic fermions coupled to a U�1� gauge field, realizing a
so-called algebraic charge liquid. Our results apply to a va-
riety of different effective descriptions of strongly interacting
fermionic theories, including the description of the �=1 /2
fractional quantum-Hall state19,29,30 and different effective
low-energy gauge theory descriptions of the cuprate
superconductors.10,31–33 The starting point for all our calcu-
lations is the calculation of the oscillatory part of the free
energy of the gauge field to Gaussian accuracy, see Eq. �41�,
which only depends upon input quantities of the Fermi liquid

state, which obtains in the limit N→�. For the specific heat,
we calculate a correction to the LK amplitude of the oscilla-
tions given in Eq. �43� and compare it to the standard LK
result in Figs. 1 and 2. Most interestingly, we find nonlinear
temperature dependence. We also calculate the magnetization
oscillations due to the gauge field 	Eq. �45�
, which again
shows very different temperature behavior of the amplitude
compared to the Fermi-liquid result. We point out a couple of
generic situations, in which our result holds and furthermore
discuss its meaning in the context of the gauge theoretic
description of the underdoped cuprates introduced by Gal-
itski and Sachdev,10 leading to Eq. �60� as the central result.

We note that Refs. 34 and 35 have investigated quantum
oscillations in a non-Fermi-liquid state using the anti-de-
Sitter/conformal field theory �AdS/CFT� correspondence,
finding different deviations from the LK form.

ACKNOWLEDGMENTS

We acknowledge useful discussions with A. Altland, G. S.
Boebinger, S. Florens, B. Halperin, M. A. Levin, and S.
Riggs. This research was supported by the Deutsche
Forschungsgemeinschaft under Grant No. FR 2627/1–1
�L.F.�, and by the NSF under Grant No. DMR-0757145 �S.S.
and L.F.�.

APPENDIX A: THE GRAND POTENTIAL

The grand potential of the disordered Fermi gas in a mag-
netic field is readily calculated using the fermionic propaga-
tor

� = − 	−1 1

2�lB
2 �

m,n
ln	− G−1��n,Em�
 , �A1�

where

G��n,Em� =
1

i�n + � − Em +
i

2�
sgn �n

�A2�

with Em=�c�m+1 /2�. We use the following Poisson summa-
tion identity7

�
m

fn��c�m +
1

2
�� = �

0

� dx

�c
fn�x�

− 2�
l=1

�
�− 1�l

2�l
�

0

�

dxfn��x�sin
2�lx

�c

�A3�

with

fn��x� =
− 1

i�n + � − x + i
sgn �n

2�

= −
1

2��
�

−�

�

d�
1

i�n − �

1

�� + � − x�2 +
1

4�2

. �A4�

We can now perform the Matsubara sum yielding
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	−1�
n

fn��x� = �
−�

�

d�nf���G���� . �A5�

We furthermore use 1
2�lB

2 =�0�c, which implies

� = − 	−1�
n

�0�
0

�

dE ln�− i�n + � − E − i
sgn �n

2�
�

+ 2�0�c�
l=1

�
�− 1�l

2�2l
�

0

�

dE sin
2�lE

�c

�� d�nf���G���,E� . �A6�

We will now concentrate on calculating the second term. We
integrate the energy by parts to obtain

�
0

�

dE sin
2�lE

�c
� d�nf���G���,E�

=� d�nf���
�c

2�l
cos

2�lE

�c
	G���,0� − G���,��


−� d�nf���
�c

2�l
�

0

�

dE cos
2�lE

�c

d

dE
G���,E� .

�A7�

The first term on the right hand only produces one term. This
can easily be checked, since for E=0 the expression is finite,
whereas for E→� one can see, that the term vanishes, since
the Fermi function restricts � to be smaller than zero. Con-
sequently, we obtain

�
0

�

dE sin
2�lE

�c
� d�nf���G���,E�

=� d�nf���
�c

2�l
G���,0�

−� d�nf���
�c

2�l
�

0

�

dE cos
2�lE

�c

d

dE
G���,E� .

�A8�

We can split the remaining task into two parts. For the first
integral one obtains in the limit ��

1
2� ,T

� d�nf���
�c

2�l
G���,0� = −

�c

2l
. �A9�

We now calculate the second integral

−� d�nf���
�c

2�l
�

0

�

dE cos
2�lE

�c

d

dE
G���,E�

= − �nf���
�c

2�l
�

0

�

dE cos
2�lE

�c
G���,E��

�→−�

�→�

+� d�
dnf���

d�

�c

2�l
�

0

�

dE cos
2�lE

�c
G���,E� .

�A10�

The first term again is easily analyzed. For �→� the Fermi
distribution annihilates the expression. For �→−� we real-
ize that the denominator of the Green’s function diverges,
since E�0, which implies that the denominator overall goes
like 1

��+��2+ 1
4�2

for �→−�, thus going quadratically to zero.

This implies

−� d�nf���
�c

2�l
�

0

�

dE cos
2�lE

�c

d

dE
G���,E�

=� d�
dnf���

d�

�c

2�l
�

0

�

dE cos
2�lE

�c
G���,E� .

�A11�

This expression can be treated by noting the derivative of the
Fermi energy pins the � integral to zero. This allows to
perform the energy integration according to

�
0

�

dE cos
2�lE

�c
G���,E�

= �
−�

�

dE cos
2�l�E + ��

�c
G���,E − ��

 �
−�

�

dE cos
2�l�E + ��

�c
G���,E − ��

= − ��cos
2�l�

�c
cos

2�l�

�c
− sin

2�l�

�c
sin

2�l�

�c
�e−l�/�c�.

�A12�

From there we can go on to solve the remaining integral.
Since sin2�l�

�c
is an odd function of � and

dnf���
d� even, the

integral over sin2�l�
�c

drops out leaving us with

−� d�
dnf���

d�

�c

2l
cos

2�l�

�c
cos

2�l�

�c
e−�l/�c�

=
�c

2l
cos

2�l�

�c
e−�/�c�

2�2l
T

�c

sinh
2�2lT

�c

. �A13�

We finally obtain �except for the diamagnetic contribution
this can be compared to Ref. 21�

� = �0 −
�0�c

2

2�2 �
l=1

�
�− 1�l

l2 �1 − cos
2�l�

�c

�l

sinh �l
e−l�/�c��

= �0 +
�0�c

2

24
+

�0�c
2

2�2 �
l=1

�
�− 1�l

l2 cos
2�l�

�c

�l

sinh �l
e−l�/�c�

�A14�

where �l=
2�2lT

�c
. In the limit �c��1 we can approximate the

grand potential as
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� = �0 +
�0�c

2

24
−

�0�c
2

2�2 cos
2��

�c

�1

sinh �1
e−�/�c�. �A15�

One can easily obtain the T
�c

→0 limit of this expression.
This yields

� = �0 +
�0�c

2

24
−

�0�c
2

2�2 cos
2��

�c
e−�/�c�

= �0 +
�eB�2

48�m
−

�eB�2

4�3m
cos

2��

�c
e−�/�c�. �A16�

APPENDIX B: THE FREE ENERGY OF THE
OSCILLATORY PART OF THE PHOTON SYSTEM

In the following we sketch the isolation of the
temperature-dependent part of the oscillatory part of the free
energy. We start with an expression of the type

Fosc
A = ��

0

�

qdq�
−��

��
d�nb���

�q2

Aq4 + �2 , �B1�

where �2kf and ��Ef. We first perform the integration
with respect to q

Fosc
A =

�

4A
�

−��

��
d�nb���� ln�A�4 + �2

�2 � �B2�

and an integration by parts which leads to

Fosc
A =

�����2

8A
ln�1 + A��2

��
�2� +

��4

8
ln	A�4 + ����2


−
�

8A
�

−��

��
d�nb�����2 ln�1 +

A�4

�2 �
−

��4

8
�

−��

��
d�nb����ln��2 + A�4� . �B3�

The first two terms can be discarded since they have no
temperature dependence. The last term will also not contrib-
ute a temperature-dependent part to leading order in T

��
and

T
�2 . Proceeding with the remaining parts of the integral we
obtain

Fosc
A  −

�

8A
T2 ln

�A�2

T
�

−�

�

d�
�2

1 − cosh �

+
�

8A
T2�

−�

�

d�
�2 ln���

1 − cosh �

=
�

6A
�2T2 ln

�A�2

T
− 0.05880

�

A
T2. �B4�
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